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ABSTRACT 
This paper is concerned the state estimation problem for nonlinear systems with uncertain process noise 

covariance and poor observation condition. Firstly, incremental measurement equation is reconstructed by 

incremental modeling technology. Then, we estimate the uncertain process noise covariance by maximum a 

posterior (MAP) estimator. Finally, combining with high-degree cubature Kalman filter (HCKF), an adaptive 

high-degree cubature incremental Kalman filter (AHCIF) is proposed under poor observation condition. The 

simulations show that the developed algorithm can effectively eliminate the unknown system error.  Furthermore, 

it can also improve estimation accuracy and have a great prospect in the application. 

 

KEYWORDS: adaptive filtering; high-degree cubature Kalman filter; strong tracking filter. 

1. INTRODUCTION 
Due to the complexity and time variation of the practical application system, state estimation in nonlinear systems 

is more and more concerned. In order to precisely control the modern systems, nonlinear filtering and estimation 

have been mightily studied. And a number of algorithms have been developed to solve the nonlinear filtering 

problem such as extended Kalman filter (EKF) [1,2], unscented Kalman filter (UKF) [3], and cubature Kalman 

filter (CKF) [4].   

EKF is the classical method for nonlinear estimation. It based on linearization theory simply linearizes all 

nonlinear models so that the traditional linear Kalman filter can be used. But it alse has many disadvantages, such 

as low accuracy, poor stability, easily divergence, and complexity computing of Jacobian matrix. UKF uses the 

nonlinear model instead of linearization. It linearizes the random variable and Gaussian distribution while the 

nonlinear model equations are directly used in the calculations. Compared with the EKF, UKF has the features of 

lower computation, higher precision and better real-time capability. As in the filtering process, CKS’s weight is 

always positive to ensure the positive definite of covariance. It is suitable to solve the nonlinear filtering problem 

from low dimension to high dimension and has a wider range of application. Recently, the high-degree CKF 

(HCKF) is proposed to improve the performance of the CKF [5]. The accuracy and stability performances of 

HCKF are close to Gauss-Hermite quadrature filter but at lower computational cost. HCKF can achieve higher 

accuracy than EKF, UKF, and CKF.   

Unfortunately, above algorithms must be based on an accurate system model, otherwise it will cause large 

estimation error and even filter divergence. In practical applications, due to the effect of environment factors, the 

instability of measurement devices and improper models and parameters, there usually are unknown system errors 

of the measurement equation and uncertain process noise covariance. Maximum a posteriori (MAP) estimator is 

an effective noise estimation method. On this basis, a series of adaptive filters is proposed [6,7]. Meanwhile, Fu 

et al. [8] proposed an incremental system modeling method, which can effectively eliminate the unknown errors 

of the measurement system. Combining with different basic filters, they developed a series of incremental filters, 

which have good engineering application value [9-11]. 

In view of this, this paper studies the nonlinear filter with unknown process noise statistics under poor observation 

condition. Based on incremental system models, an adaptive high-degree cubature incremental Kalman filter 
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(AHCIF) is presented combining MAP estimator. Finally, simulation results show the effectiveness of the 

proposed methods. 

 

2. PROBLEM FORMULATION 
Consider the filtering problem of a nonlinear dynamic system with poor observation condition, which state-

space model is described as: 

( 1) ( ( )) ( )k k k  x f x w                                                                   (1) 

( ) ( ( )) ( ) ( )k k k k  y h x η v                                                                  (2) 

where ( ) nk x  is the target state, ( ) mk y  is the measurement value; : n n f  is the nonlinear state 

evolution process, : n m h is the corresponding nonlinear measurement mapping; ( ) mk η  represents 

unknown system errors due to measurement equation modeling; process noise ( ) nk w and measurement noise 

( ) mk v are independent Gaussian noise with zero means, their variances are respective ( )kQ  and ( )kR . )0(x
 

is the initial target state with mean 0x
 
and variance 0P , and independent of )(kw  and )(kv . 

In order to eliminate unknown system errors ( )kη , we construct the incremental measurement equation as 

following [8-11]: 

( ) ( ) ( 1)

( ( )) ( ( 1)) ( ) ( 1) ( ) ( 1)

k k k

k k k k k k

   

        

y y y

h x h x η η v v
                               (3) 

When the sampling rate is high enough, then  ( ) ( 1) 0k k  η η . In this case, we denote ( ) ( )k k z y and

( ) ( ) ( 1)k k k  u v v , then incremental measurement equation can be rewritten as 

( ) ( ( )) ( ( 1)) ( )k k k k   z h x h x u                                                  (4) 

The covariance measurement noise ( )ku  is ( ) ( 1)k k R R .  Obviously,  the incremental system composed by 

equations (1) and (4) can eliminate the  unknown system errors effectively. 

 

3. ADAPTIVE HIGH-DEGREE CUBATURE INCREMENTAL FILTER 

3.1 Noise covariance estimator 

In practice, it is necessary to estimate the noise covariance ( )kQ . Denote ˆ ( )kQ  is an estimation of ( )kQ , which 

can be obtained by maximum a posterior (MAP) estimator [6,7] 

When ( )kQ is constant, its suboptimal MAP estimation ˆ ( )kQ  can be recursively calculated by [6] 

1ˆ ˆ( ) {( 1) ( 1) ( ) ( ) ( ) ( ) ( | ) ( ) ( 1| 1) ( 1| 1) ( )T T Tk k k k k k k k k k k k k k k
k

         Q Q K z z K P F P P F           (5) 

where, ( )kK is filter gain, ˆ( ) ( ) ( | 1)k k k k  z z z  is measurement innovation, ( )kF is the Jacobian matrix 

of ( ( ))kf x  , initial value 
0

ˆ (0) Q Q . 

When ( )kQ  is time-varying, its suboptimal MAP estimation ˆ ( )kQ  can be recursively calculated by [7] 

 ˆ ˆ( ) 1 ( 1) ( 1) ( 1) ( ) ( ) ( ) ( ) ( | ) ( ) ( 1| 1) ( 1| 1) ( )T T Tk d k k d k k k k k k k k k k k k k             Q Q K z z K P F P P F    (6) 

where 1( ) (1 ) (1 )kd k b b    , b is the forgetting factor, which satisfies 0.95 0.99b  。 

3.2 Adaptive high-degree cubature incremental filter (AHCIF) 

In this subsection, we introduce MAP estimator into HCKF (fifth-degree CKF) to estimate and modify process 

noise statistics, which can reduce the model error and improve the estimation accuracy. Based on nonlinear 

discrete incremental system by equation (1) and (4), an adaptive high-degree cubature incremental filter is 

proposed. Suppose that the state estimate  1|1ˆ  kkx and its corresponding covariance  1|1  kkP are 

available at time )1( k ,  kk |x̂ and corresponding covariance matrix  kk |P  can be obtained as follows: 
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Algorithm:  AHCIF 

 

Step1: Initialization 

0
ˆ(0 | 0) x x , 

0(0 | 0) P P , 
0

ˆ (0) Q Q  

Step2: Time update 

1) Calculate the high-degree cubature points )2,,1,0( 2ni   

)1|1(ˆ)1|1()1|1(  kkkkkk ii xξSx                                                (7) 

where ( 1| 1)k k S is the square root factor of ( 1| 1)k k P . Point set }{ iξ is given by 
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where ie  is the unit vector in n  with the  ith element being. Point sets }{ 

jε  and }{ 

jε  are determined by 
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2) Compute the propagated cubature points 

  )1|1()1|(*  kkkk ii xfx                                                                  (8) 

3) Estimate the predicted state and its error covariance  






22

0

* )1|()1|(ˆ
n

i

ii kkkk xx                                                                   (9) 

22
* *

0

ˆˆ ˆ( | 1) ( | 1) ( | 1) ( | 1) ( | 1) ( 1)
n

T

i i i

i

k k k k k k k k k k k


               P x x x x Q              (10) 

where the weights i are obtained by 
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Step3: Measurement update 

1) Evaluate the high-degree cubature points 
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)1|(ˆ)1|()1|(  kkkkkk ii xξSx                                                  (11) 

where ( | 1)k k S is the square root factor of ( | 1)k k P . 

2) Compute the propagated cubature points 

    ˆ( | 1) ( ( | 1)) ( ( 1| 1))i ik k k k k k     z h x h x                                                (12) 

3) Calculate the predicted measurement 






22

0

)1|()1|(ˆ
n

i

ii kkkk zz                                                          (13) 

4) Compute the innovation covariance matrix 

  
22

0

ˆ ˆ( | ) ( | 1) ( | 1) ( | 1) ( | 1) ( ) ( 1)
n

T

zz i i i

i

k k k k k k k k k k k k


         P z z z z R R                    (14) 

5) Evaluate the cross-covariance matrix 

  
22

0

ˆ ˆ( | ) ( | 1) ( | 1) ( | 1) ( | 1)
n

T

xz i i i

i

k k k k k k k k k k


      P x x z z                                     (15) 

6) Calculate the Kalman gain  

)|()|()( 1 kkkkk zzxz

 PPK                                                       (16) 

7) Estimate the updated state and its error covariance 









 )()|()()1|()|(

)]1|(ˆ)()[()1|(ˆ)|(ˆ

1 kkkkkkkk

kkkkkkkk

T

zz KPKPP

zzKxx
                                      (17) 

Step4: Noise covariance estimation 

Estimate ˆ ( )kQ  according to equation (5) or (6). 

 

4. SIMULATION EXAMPLE 
In this section, a simple simulation example is used to verify the effectiveness of the proposed AHCIF compared 

with adaptive unscented incremental filter (AUIF) in [10]. Consider the following univariate nonstationary growth 

model (UNGM)[10,11] 

)()2.1cos(8
)1(1

)1(5.2
)1(5.0)(

2
kwk

kx

kx
kxkx 




                             (18) 

   
2 ( )

( ) ( ) ( )
20

x k
y k k v k                                                      (19) 

Where )(kw and )(kv  are independent Gaussian white noises. ( )k  is the unknown system error of measurement 

equation. In our simulation, 1)( kR , ( ) 4k  , 0.95b  , initial state (0 | 0) 0x  and its covariance 10)0|0( P , 

simulation step is 100. Process noise covariance ( )Q k  is time varying, which is satisfied 

1, 1 50
( )

2, 50 100

k
Q k

k

 
 

 
 

The simulation results are illustrated by Figure 1 and Figure 2. Synchronously, the mean absolute error of two 

methods is given by Table 1. 

http://www.ijesrt.com/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


 

Figure 1 Estimation curves of two algorithms 

 

Figure 2 Absolute error curves of two algorithms

 

 

Table 1. Mean absolute error of two algorithms 

Algorithm AUIF AHCIF 

Mean absolute error 1.3200 0.8720 

From Figure 1 and Figure 2, it is easy to see that both methods can effectively estimate the state to some extent, 

because both of them can eliminate the unknown system errors ( )k  and estimate the covariance of process noise. 

Meanwhile, AHCIF has better filtering effect than AUIF. The mean absolute error in Table 1 shows that the mean 

absolute error of AUIF is 1.3200, while that of AHCIF is 0.8720, which improves the accuracy by 43.72%. This 

also shows that the method proposed in this paper is more effective. 

 

5. CONCLUSION 
This article investigates the problem of nonlinear estimation with unknown variance of process noise under poor 

observation condition. In order to deal with these uncertainties, incremental modeling technology and MAP 

estimator are adopted in high-degree cubature Klamn filter (HCKF), a novel adaptive HCKF is developed, which 

is called AHCIF. The experimental results demonstrate the effectiveness of the proposed algorithms. It will be an 

interesting future research topic to consider the fusion algorithm for multi-sensor systems. 
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